Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: As only a minor portion of the information present in histological sections is accessible by eye, recognition and quantification of complex patterns and relationships among constituents relies on digital image analysis. In this study, our working hypothesis was that, with the application of digital image analysis technology, visually unquantifiable breast cancer microarchitectural features can be rigorously assessed and tested as prognostic parameters for invasive breast carcinoma of no special type. METHODS: Digital image analysis was performed using public domain software (ImageJ) on tissue microarrays from a cohort of 696 patients, and validated with a commercial platform (Visiopharm). Quantified features included elements defining tumour microarchitecture, with emphasis on the extent of tumour-stroma interface. The differential prognostic impact of tumour nest microarchitecture in the four immunohistochemical surrogates for molecular classification was analysed. Prognostic parameters included axillary lymph node status, breast cancer-specific survival, and time to distant metastasis. Associations of each feature with prognostic parameters were assessed using logistic regression and Cox proportional models adjusting for age at diagnosis, grade, and tumour size. RESULTS: An arrangement in numerous small nests was associated with axillary lymph node involvement. The association was stronger in luminal tumours (odds ratio (OR) = 1.39, p = 0.003 for a 1-SD increase in nest number, OR = 0.75, p = 0.006 for mean nest area). Nest number was also associated with survival (hazard ratio (HR) = 1.15, p = 0.027), but total nest perimeter was the parameter most significantly associated with survival in luminal tumours (HR = 1.26, p = 0.005). In the relatively small cohort of triple-negative tumours, mean circularity showed association with time to distant metastasis (HR = 1.71, p = 0.027) and survival (HR = 1.8, p = 0.02). CONCLUSIONS: We propose that tumour arrangement in few large nests indicates a decreased metastatic potential. By contrast, organisation in numerous small nests provides the tumour with increased metastatic potential to regional lymph nodes. An outstretched pattern in small nests bestows tumours with a tendency for decreased breast cancer-specific survival. Although further validation studies are required before the argument for routine quantification of microarchitectural features is established, our approach is consistent with the demand for cost-effective methods for triaging breast cancer patients that are more likely to benefit from chemotherapy.

Original publication

DOI

10.1186/s13058-018-0934-x

Type

Journal

Breast Cancer Res

Publication Date

05/02/2018

Volume

20

Keywords

Breast cancer, Digital image analysis, Microarchitecture, Prognosis, Tumour nests, Adult, Aged, Breast, Breast Neoplasms, Disease-Free Survival, Female, Humans, Image Processing, Computer-Assisted, Lymph Nodes, Lymphatic Metastasis, Middle Aged, Prognosis, Proportional Hazards Models