Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Few cohort studies explored the long-term effects of ambient fine particulate matter (PM2.5) on incidence of cardiovascular diseases (CVDs), especially in countries with higher levels of air pollution. We aimed to evaluate the association between long-term exposure to PM2.5 and incidence of CVD in China. We performed a prospective cohort study in ten regions that recruited 512,689 adults during 2004-2008, with follow-up until 2017. Annual PM2.5 concentrations were estimated using a satellite-based model with national coverage and 1 x 1 km spatial resolution. Time-varying Cox proportional hazard regression models were used to estimate hazard ratios (HRs) for all-cause and cause-specific CVDs associated with PM2.5, adjusting for conventional covariates. During 5.08 million person-years of follow-up, 148,030 incident cases of CVD were identified. Long-term exposure to PM2.5 showed positive and linear association with incidence of CVD, without a threshold below any concentration. The adjusted HRs per 10 μg/m3 increase in PM2.5 was 1.04 (95%CI: 1.02, 1.07) for total CVD. The risk estimates differed between certain population subgroups, with greater HRs in men, in household with higher income, and in people using unclean heating fuels. This prospective study of large Chinese population provided essential epidemiological evidence for CVD incident risk associated with PM2.5.

Original publication

DOI

10.1021/acs.est.2c03084

Type

Journal article

Journal

Environ Sci Technol

Publication Date

31/08/2022

Keywords

cardiovascular disease, cohort study, fine particulate matter, incidence, satellite-based modeling