Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Importance: Obesity is associated with a higher risk of cardiovascular disease (CVD), but little is known about the role that circulating protein biomarkers play in this association. Objective: To examine the observational and genetic associations of adiposity with circulating protein biomarkers and the observational associations of proteins with incident CVD. Design, Setting, and Participants: This subcohort study included 628 participants from the prospective China Kadoorie Biobank who did not have a history of cancer at baseline. The Olink platform measured 92 protein markers in baseline plasma samples. Data were collected from June 2004 to January 2016 and analyzed from January 2019 to June 2020. Exposures: Measured body mass index (BMI) obtained during the baseline survey and genetically instrumented BMI derived using 571 externally weighted single-nucleotide variants. Main Outcomes and Measures: Cross-sectional associations of adiposity with biomarkers were examined using linear regression. Associations of biomarkers with CVD risk were assessed using Cox regression among those without prior cancer or CVD at baseline. Mendelian randomization was conducted to derive genetically estimated associations of BMI with biomarkers. Findings: In observational analyses of 628 individuals (mean [SD] age, 52.2 [10.5] years; 385 women [61.3%]), BMI (mean [SD], 23.9 [3.6]) was positively associated with 27 proteins (per 1-SD higher BMI; eg, interleukin-6: 0.21 [95% CI, 0.12-0.29] SD; interleukin-18: 0.13 [95% CI, 0.05-0.21] SD; monocyte chemoattractant protein-1: 0.12 [95% CI, 0.04-0.20] SD; hepatocyte growth factor: 0.31 [95% CI, 0.24-0.39] SD), and inversely with 3 proteins (Fas ligand: -0.11 [95% CI, -0.19 to -0.03] SD; TNF-related weak inducer of apoptosis, -0.14 [95% CI, -0.23 to -0.06] SD; and carbonic anhydrase 9: (-0.14 [95% CI, -0.22 to -0.05] SD), with similar associations identified for other adiposity traits (eg, waist circumference [r = 0.96]). In mendelian randomization, the associations of genetically elevated BMI with specific proteins were directionally consistent with the observational associations. In meta-analyses of genetically elevated BMI with 8 proteins, combining present estimates with previous studies, the most robust associations were shown for interleukin-6 (per 1-SD higher BMI; 0.21 [95% CI, 0.13-0.29] SD), interleukin-18 (0.16 [95% CI, 0.06-0.26] SD), monocyte chemoattractant protein-1 (0.21 [95% CI, 0.11-0.30] SD), monocyte chemotactic protein-3 (0.12 [95% CI, 0.03-0.21] SD), TNF-related apoptosis-inducing ligand (0.23 [95% CI, 0.13-0.32] SD), and hepatocyte growth factor (0.14 [95% CI, 0.06-0.22] SD). Of the 30 BMI-associated biomarkers, 10 (including interleukin-6, interleukin-18, and hepatocyte growth factor) were nominally associated with incident CVD. Conclusions and Relevance: Mendelian randomization shows adiposity to be associated with a range of protein biomarkers, with some biomarkers also showing association with CVD risk. Future studies are warranted to validate these findings and assess whether proteins may be mediators between adiposity and CVD.

Original publication

DOI

10.1001/jamacardio.2020.6041

Type

Journal

JAMA Cardiol

Publication Date

01/03/2021

Volume

6

Pages

276 - 286